Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00221139)

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Preparation of E-(1,2-difluoro-1,2-ethenediyl)bis(tributylstannane)

Qibo Liu, Donald J. Burton *

Department of Chemistry, University of Iowa, IA 52242, USA

ARTICLE INFO

Article history: Received 6 November 2009 Received in revised form 23 December 2009 Accepted 28 December 2009 Available online 19 February 2010

Keywords: Synthons Stannanes Olefins Polyenes

ABSTRACT

Chlorotrifluoroethene is converted in situ to $[F_2C=CFSiMe_3]$. The crude $[F_2C=CFSiMe_3]$ solution is reduced with lithium aluminum hydride to $(HFC=CFSiMe₃)$, which (without isolation) is converted to (Z) -HFC=CFSnBu₃. Subsequent metallation and trapping of the vinyllithium reagent with Bu₃SnCl gives (E) -Bu₃SnCF=CFSnBu₃ in 73% overall yield. Only two isolation steps are required and the use of Me₃SiCl and $F_2C=$ CFCl provides a cheap, economical route to this useful synthon.

 \odot 2010 Elsevier B.V. All rights reserved.

1. Preparation of 1.1.2-trifluorotrimethylsilylethene¹

An oven dried, 1-l, three-necked, round-bottomed flask equipped with a Teflon-coated stir bar, dry ice/isopropanol cooled $cold$ -finger condenser, $²$ low-temperature thermometer, rubber</sup> septum and nitrogen inlet [\(Fig. 1](#page-1-0)), was charged with 55.3 g (498 mmol) of Me₃SiCl (98% purity)³ and 250 ml of anhydrous THF.⁴ The solution was stirred and cooled to $-80\,^{\circ}$ C with a liquid

0022-1139/\$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:[10.1016/j.jfluchem.2009.12.025](http://dx.doi.org/10.1016/j.jfluchem.2009.12.025)

nitrogen/pentane bath. Then, 71 g (609 mmol) of chlorotrifluoroethene⁵ was condensed into the flask using the above described $cold$ -finger condenser, while maintaining the solution at -72 to -80 °C. Then, 208 ml (520 mmol) of a 2.5 M BuLi/hexanes⁶ was added dropwise to the solution over 2.5 h via a syringe. After completion of the BuLi solution, the reaction mixture was stirred at -78 °C for 2 h, then warmed to RT overnight. Flash distillation ([Fig. 2\)](#page-1-0) of the reaction mixture yielded a colorless solution.⁷ Excess $F₂C=$ CFCl was removed by simple distillation. The ¹⁹F NMR yield of the vinylsilane was $> 90\%^{8,9}$ as determined by integration of an aliquot of the reaction mixture using 0.082 mmol of $C_6H_5CF_3$ as the internal standard.

^{*} Corresponding author. Tel.: +1 319 335 1363; fax: +1 319 335 1270.

E-mail address: donald-burton@uiowa.edu (D.J. Burton).

¹ Caution! This procedure involves volatile and hazardous reagents (stannanes) and should be conducted in an efficient fume hood.

 2 The temperature of the isopropanol in the cold finger was maintained at -50 to -60 °C.

 3 Me₃SiCl was purchased from the Aldrich Chemical Co. and used directly. It was transferred via a syringe.

⁴ Tetrahydrofuran (THF) was dried by distillation from sodium benzophenone ketyl.

 5 F₂C=CFCl was first condensed from a commercial cylinder into a glass trap, which was cooled with dry ice. Then the liquified chlorotrifluoroethene was condensed into the reaction mixture via the dry ice\isopropanol cooled cold-finger condenser. The amount of $F_2C=$ CFCl was measured by the difference in the weight of the glass trap before and after condensation.

⁶ BuLi/hexanes was purchased from the Aldrich Chemical Co. and used directly. The addition of BuLi to the reaction mixture causes an exotherm. The reaction mixture was maintained below -78 °C by carefully controlling the rate of addition over 2.5 h.

⁷ The boiling point of the product, solvent and exchange product from the metallation reaction are \sim 70 °C – too close to separate efficiently, thus the crude $F_2C=CFSiMe_3$ was used directly in the next step.
⁸ Procedure for calculation of the ¹⁹F NMR yield of the vinylsilane (1) 0.5 ml of the

reaction mixture was removed via a graduated syringe and transferred to an nmr tube; (2) 0.082 mmol (10 μ l) of C₆H₅CF₃ was then added to the nmr tube via a microsyringe; (3) the contents of the nmr tube mixed and the ¹⁹F NMR spectrum of the resultant mixture was obtained on an AC-300 NMR spectrometer; (4) via the integrations of the 19F NMR signals, the quantity of the vinylsilane product was calculated as follows: $n = 0.082 \times 3 \times \ln 2/\ln 1$; $c = n/0.5$ (units: mmol/ml or mol/l); $N = c \times v(n,$ number of mmoles of F₂C=CFSiMe₃ in the nmr tube), In 1, integration of the 19 F NMR signal of C₆H₅CF₃; In 2, integration of one of the three peaks of F₂C=CFSiMe₃; c, the concentration of the F₂C=CFSiMe₃ in the reaction mixture; v , the total volume of the reaction mixture; N, the total number of mmoles of $F_2C=CFSiMe_3$ in the reaction mixture). The NMR yield of the $F_2C=CFSiMe_3$ was calculated as: NMR yield = N/498.

 9 F₂C=CFSiMe₃ gave the following ¹⁹F NMR spectroscopic data: ¹⁹F (282.4 Hz), CDCl₃, CFCl₃ reference): δ -88.7 ppm (dd, ²J_{FF} = 71 Hz, ³J_{FF} = 25 Hz); -117.6 (dd, ${}^{3}J_{\text{FF}}$ = 115 Hz, ${}^{2}J_{\text{FF}}$ = 71 Hz), -199.5 (dd, ${}^{3}J_{\text{FF}}$ = 115 Hz), ${}^{3}J_{\text{FF}}$ = 25 Hz).

dry ice/isopropanol cold bath nitrogen atmosphere chlorotrifluoroethylene gas n-BuLi liquid nitrogen/pentane low-T bath

magnetic stirrer/heater combo

Fig. 1. Preparation of $F_2C=CFSiMe_3$.

2. Isomeric mixture of (Z) - and (E) -1,2difluorotrimethylsilylethenes

B
$$
\left[\underset{F}{\overset{F}{\sum}} \underset{SiMe_3}{\times} \right] \xrightarrow{LiAlH_4, THF} \left[\underset{Z:E=91:9}{\overset{H_4}{\times}} \underset{Z:E=91:9}{\times} \right]
$$

An oven-dried 2-l, three-necked, round-bottomed flask equipped with a Teflon-coated stir bar, cold-water condenser, thermometer, rubber septum and nitrogen inlet (Fig. 3) was charged with 15.7 g (413 mmol) of LiAlH₄. The flask was cooled to $0 °C$ and 50 ml of anhydrous THF was gradually added to the flask *via* syringe.¹⁰ Then, the $F_2C=CFSiMe_3$ solution from Part A was added dropwise to the LiAlH₄ solution over 1 h via an oven-dried constant pressure addition funnel, maintaining the internal temperature of the reaction mixture below 25 \degree C. When the addition of the vinylsilane solution had been completed, the reaction mixture was stirred at RT for 1 h. 11 Then 100 ml of dry triglyme was added to the reaction mixture via a syringe.¹² Flash distillation of the solution at RT/1 mm Hg yielded a colorless solution (Note [7](#page-0-0)). 19 F NMR analysis of the distillate indicated the formation of (Z)- and (E)-HFC=CFSiMe₃ (Z:E = 91:9).¹³

3. (Z)-1,2-Difluoroethenyltributylstannane

 11 At this stage, the 19 F NMR spectrum of the reaction mixture indicated complete consumption of $F_2C=CFSiMe_3$ (Z:E = 91:9). If a small amount of $F_2C=CFSiMe_3$ is left unreacted, it may be readily reduced to the 1,2-difluorotrimethylsilylethenes by heating the reaction mixture at 45-50 \degree C for 1 h. It is necessary to ensure complete conversion of the F₂C=CFSiMe₃, since F₂C=CFSiMe₃ is converted to F₂C=CFSnBu₃ in the next step; $F_2C=CFSnBu_3$ is difficult to separate from the anticipated products, (Z)- and (E)-1,2-difluoroethenyltributylstannanes formed in step C.

Figs. 3 and 4. Preparation of (E) - and (Z) -HFC=CFSiMe₃.

An oven-dried 1-l, one-necked, round-bottomed flask equipped with a Teflon-coated stir bar, cold-water condenser, and nitrogen inlet (Fig. 4) was charged with the solution from reaction B, 124.9 g (201 mmol) of $(Bu_3Sn)_2O$ (96% purity) and 9.5 ml (9.5 mmol) of TBAF.¹⁴ The reaction mixture was stirred at 65-70 °C for 3 h.¹⁵ Low boiling point materials were removed by flash distillation at RT/ 1 mm Hg. The residue was extracted with pentane (5 \times 110 ml).¹⁶

Dark solids that are soluble in neither pentane nor water were removed via vacuum filtration in a well-ventilated hood. The filtrate was washed with saturated aqueous KF (5×100 ml) and water (4×200 ml) consecutively. The organic layer was separated; dried over $MgSO_4$; the $MgSO_4$ removed by gravity filtration; the majority of the solvent removed by rotary evaporation. Removal of

 12 Triglyme is added to the reaction mixture in order to avoid carrying the flash distillation to dryness.

¹⁹F NMR yield of reaction B was calculated to be >90%.

¹⁴ TBAF was purchased from the Aldrich Chemical Co. as a 1.0 M solution in THF containing \sim 5 wt% of water and was used directly.

At this stage, ¹⁹F NMR analysis of the reaction mixture indicated complete consumption of HFC=CFSiMe₃ and formation of HFC=CFSnBu₃ ($Z: E = 91:9$). The completion of the reaction was determined by estimating the NMR yield of the reaction. If the reaction stops before completion an additional aliquot of 1 ml of TBAF can be added to the reaction mixture until the ¹⁹F NMR yield is \sim 100%.

¹⁶ Hexanes can also be used to extract the product from the reaction mixture.

Fig. 5. Preparation of (E) -Bu₃SnCF=CFSnBu₃.

the remaining solvent at 20 °C/0.1 mm Hg yielded 141.5 g (98%) of a pale yellow liquid, GLPC purity 98.5% (*Z*:*E* = 92:8). This isomeric mixture was added to a silica gel column 17 and eluted with hexanes, $R_{\rm f} = 0.58_{(Z)}$; $R_{\rm f} = 0.46_{(E)}$.¹⁸

Fractions with similar R_f values were collected; and the majority of the solvent removed by rotary evaporation. Removal of the remaining solvent at 20 \degree C/0.1 mm Hg yielded 134.5 g of a colorless liquid, GLPC purity >99%; $Z:E = 97:3.^{19,20,21}$

4. (E)-(1,2-Difluoro-1,2-ethenediyl)bis[tributylstannane]

An oven-dried 250 ml, three-necked, flask equipped with a Teflon-coated stir bar, low-temperature thermometer, rubber septum and nitrogen inlet (Fig. 5) was charged with 120 ml of anhydrous THF and 3.4 g (24 mmol, 1.2 equiv.; 99% purity) of

isomer) was 94%. The overall isolated yield of the (Z) -stannane, based on Me₃SiCl, was 73% (based on Z-isomer only).

2,2,6,6-tetramethylpiperidine.²² The reaction solution was cooled to -20 °C in a pentane/dry ice cooled bath. Then 10 ml (25 mmol, 2.5 M) of n-butyllithium was added dropwise to the reaction mixture over 10 min.²³ The reaction mixture temperature was maintained below -10 °C by carefully controlling the rate of addition. The light yellow solution was stirred at -5 to -10 °C for 20 min; then cooled to $-90\,^{\circ}\mathrm{C}$ via a pentane/liquid nitrogen cooled bath. At this temperature, 7.3 g (20.1 mmol, GLPC purity, 97%) of (Z) -1,2-difluoroethenyltributylstannane²⁴ was added dropwise via a syringe. The reaction mixture was maintained at $-90\,^{\circ}$ C for 1 h. Then, 7.12 g (21 mmol, 1.05 equiv., 97%) of tributyltin chloride was added²⁵ to the reaction mixture via a syringe at -90 °C. The reaction mixture was maintained at -90 °C for 1 h, then warmed to room temperature (over 10 h). The solvent was removed by flash distillation, the residue was extracted with diethyl ether $(4 \times 100 \text{ ml})$, then washed consecutively with water $(4 \times 400 \text{ ml})$, saturated KF solution $(3 \times 75 \text{ ml})^{26}$ and water $(4 \times 100 \text{ ml})$. The organic layer was separated and dried over anhydrous MgSO₄. The MgSO₄ was removed by gravity filtration and the remaining solvent removed by rotary evaporation. The residue was eluted with pentane through a silica gel column, 27 $R_f = 0.74$. The majority of the solvent was removed by rotary evaporation.²⁸ Removal of the remaining solvent at RT/1 mm Hg yielded 12.4 g (96%) of a colorless liquid.^{29,30}

5. Discussion

This procedure describes the preparation of a useful organometallic reagent for the introduction of (E) -1,2-difluoroethenyl units. This procedure utilizes a cheap commercial fluoroolefin precursor; all other reagents are commercially available and can be

 $\frac{22}{22}$ 2,2,6,6-Tetramethylpiperidine was purchased from Aldrich Chemical Co. and used directly.

 23 Caution: The addition of the n-butyllithium solution caused an exotherm.

²⁴ (*Z*)-1,2-Difluoroethenyltributylstannane is an isomeric mixture of 1,2-difluoroethenyltributylstannanes, Z:E = 97:3. (E)-1,2-Difluoroethenyltributylstannane decomposed in the reaction mixture upon lithiation.

²⁵ The addition tests **47** T

The addition took 45 min. The addition rate was adjusted to maintain the internal temperature below -90 °C. The addition of Bu $_3$ SnCl to the reaction mixture resulted in the formation of LiCl and the reaction mixture became viscous; eventually the reaction mixture becomes homogeneous. As a consequence, Bu₃SnCl should be added dropwise.

 KF (aq.) reacts with Bu₃SnCl to form Bu₃SnF, which is a solid and insoluble in water and organic solvents (pentane, hexane). As a consequence, the unreacted Bu₃SnCl can be separated from the product.

A 8 cm \times 40 cm silica gel column was used. About 1.5 l of pentane was utilized to elute the column. TLC was employed to monitor the elution. The TLC spots were visualized in an I_2 Chamber. The termination of elution was determined by the absence of TLC spots.

During rotary evaporation, the bath temperature increased from \sim 45 °C, while the internal pressure was gradually reduced from ambient pressure to \sim 15 mm Hg, maintaining the steady pace of distillation.

²⁹ The product showed no impurity signals via NMR $(^1H, ^{19}F, ^{13}C)$. (E)-(1,2-Difluoroethenediyl)bis[tributylstannane] prepared by this procedure gave the following spectroscopic data: ¹⁹F NMR (282.44 MHz, CDCl₃): δ -159.1 (s, 2F). ¹H NMR (300.2 MHz, CDCl₃): δ 1.53 (m, 12H), 1.32 (qt, as sextet, 12H, 3 J_{HH} = 7 Hz), 1.05 (t, 12H, 3 _{HH} = 8 Hz), 0.90 (t, 18H, 3 _{HH} = 7 Hz). ¹³C NMR (75.48 MHz, CDCl₃): δ 174.5 (2nd order due to virtual coupling), 28.8, 27.1, 13.7, 10.0 (m as t). FTIR (CCl₄, cm⁻¹): 2958 (vs), 2925 (vs), 2873 (s), 2855 (s), 1465 (m), 1042 (m).

 30 (E)-(1,2-Difluoro-1,2-ethenediyl)bis[tributylstannane] is a stable compound. When it was stored at room temperature (without protection of an inert gas) for several months, no decomposition was observed.

 17 An 8 cm \times 50 cm silica gel column was used. About 1.5 l of hexanes was used to wash the column.

¹⁸ TLC was employed to monitor the elution. The TLC spots were visualized in an I_2 chamber. Thin layer chromatography was carried out using $40\,\mathrm{mm}\times80\,\mathrm{mm}$ Polygram SilG/UV245 $_\mathrm{plates}$

¹⁹ Analytical GLPC was carried out on a Hewlett-Packard model 5890, equipped with a thermal conductivity detector and 3393 A integrator. The column was packed with 5% OV101 on chromosorb P. The typical conditions were set at 50 \degree C for 2 min, followed by a temperature increase of 20 \degree C/min. to the final temperature of 200 °C.

 20 (Z)-1,2-Difluoroethenyltributylstannane gave the following spectroscopic data: ¹⁹F NMR (282.44 MHz, CDCl₃): δ -172.9 (dd, ³J_{FF} = 119.5 Hz, ³J_{HF} = 10.8 Hz), -177.60 (dd, 3 J_{FF} = 119.5 Hz, 2 J_{HF} = 83.2 Hz). ¹H NMR (300.2 MHz, CDCl₃): δ 7.65 (dd, 1H, ²/_{HF} = 83.0 Hz, ³/_{HF} = 11.0 Hz), 1.57 (m, 6H), 1.34 (m, 6H), 1.09 (t, 6H, 3
³/_m = 8.0 Hz), 0.90 (t, 9H, ³/_m = 7.3 Hz), ¹³C NMP (75.48 MHz, CDCL); 8.165.9 (dd ${}^{3}J_{HH}$ = 8.0 Hz), 0.90 (t, 9H, ${}^{3}J_{HH}$ = 7.3 Hz). ¹³C NMR (75.48 MHz, CDCl₃): δ 165.9 (dd, ${}^{3}J_{\text{HH}}$ = 8.0 Hz), 0.90 (t, 9H, ${}^{3}J_{\text{HH}}$ = 7.3 Hz). ¹³C NMR (75.48 MHz, CDCl₃): δ 165.9 (dd, J_{CF} = 298.0 Hz, ${}^{2}J_{\text{CF}}$ = 78.9 Hz), 153.9 (dd, I_{CF} = 229.8 Hz, ${}^{2}J_{\text{CF}}$ = 47.0 Hz), 29. 13.7, 9.9. GC-MS, m/z (relative intensity): 296 (M⁺-C₄H₉, 45). (E)-1,2-Difluoroethenyltributylstannane. ¹⁹F NMR (282.44 MHz, CDCl₃): δ -142.8 (dd, 2 J_{HF} = 77.5 Hz, 3 J_{FF} = 9.5 Hz); -146.9 (dd, 3 J_{HF} = 25.6 Hz, 3 J_{FF} = 9.5 Hz). ¹H NMR (300.2 MHz), CDCl₃): δ 5.95 (dd, ²J_{HF} = 77.2 Hz, ³J_{HF} = 25.6 Hz), 1.54 (m, 6H), 1.33 (m,
6H), 1.03 (t, 6H, ³J_{HH} = 8.0 Hz), 0.90 (t, 9H, ³J_{HH} = 7.2 Hz). ¹³C NMR (75.5 MHz, CDCl₃): δ 154.9 (dd, ¹J_{CF} = 313.4 Hz, ²J_{CF} = 7.6 Hz), 141.7 (dd, ¹ CDCl₃): δ 154.9 (dd, ¹J_{CF} = 313.4 Hz, ²J_{CF} = 7.6 Hz), 141.7 (dd, ¹J_{CF} = 282.1 Hz, ²L_I = 282.1 Hz, J_{CF} = 7.0 Hz), 28.8, 27.2, 13.6, 9.95.
²¹ For step C, the isolated yield of (Z)-1,2-difluoroethenyltributylstanne (97% Z-

used directly. Each step is accomplished in high yield and can be completed in a short period of time. The conversion of (Z) - and (E) -1,2-difluorotrimethylsilylethenes to (Z) - and (E) -1,2-difluoroethenyltributylstannanes is easily accomplished via our reported procedure [1] and the by-product, Me₃SiOSIMe₃ is readily removed from the product, (E) -1,2-difluoroethenyltributylstannane by flash distillation. Metallation of (Z)-1,2-Difluoroethenyltributylstannane is straightforward. This bisstannane can be selectively reacted with vinyl halides [2–4], aryl halides [5] to yield isomerically pure fluorinated stilbenes and polyenes [6]. Recently, this procedure has been applied for the preparation of poly(arylenevinylenes) with fluorinated vinyl units. Bisstannane prepared with expensive triethylsilylchloride is a procedure requiring four isolation steps [6]. Thus, the titled procedure outlined here is the most economical route to the (E)-bisstannane. The titled bisstannane can be elaborated to (1Z,3E,5Z)- $Bu₃SnCF=CFCF=CFCFShBu₃$ in two steps and provides a useful route for the stereospecific introduction of three fluorinated ethenyl groups [2].

References

- [1] L. Xue, L. Lu, S. Pedersen, Q. Liu, R. Narske, D.J. Burton, J. Org. Chem. 62 (1997) 1064–
- 1071.
- [2] Q. Liu, D.J. Burton, J. Fluorine Chem. 130 (2009) 922-925.
[3] Q. Liu, Ph.D., Thesis, University of Iowa, 1998. Q. Liu, Ph.D., Thesis, University of Iowa, 1998.
- [4] D.C. Swanson, X. Gao, D.J. Burton, Acta Cryst. C C56 (2000) 1040–1041.
- [5] Q. Liu, D.J. Burton, Org. Lett. 4 (2002) 1483–1485.
- [6] F. Baburdi, A. Cordone, G.M. Farinola, C. Martinelli, R. Mendichi, F. Naso, M. Striccole, Eur. J. Org. Chem. (2008) 1977–1982.